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question 1

Let n be a positive integer and τ(n) be the number of positive divisors of n. The

following lemma will be useful in the following proofs:

Lemma Let r ≥ 1 with r = p1...pk , primes not necessarily distinct. We then have that

all divisors of r can be written as p1...pj , i.e. some combination of the prime

factors of r. Assume otherwise, and choose a divisor x|r. Then xy = r for

y ∈ Z.

=⇒ x1...xsy1...yt = p1...pk

Since the prime factorization of r = xy is unique, we can group these as

follows WLOG:

x1...xsy1...yt = p1...pjpj+1...pk

with x1 = p1, ..., xs = pj , and we are done.

Part (1): Suppose p is prime. pr , then, is its own prime factorization. We can

deduce that all divisors of pr may be written as {p0, p1, ..., pr}, where, for any

divisor pi , we can write piq = pr with q = pr−i .

As shown before, all divisors can be written as a product of prime factors, and so

the set {p0, p1, ..., p
r} is indeed complete, and has r + 1 elements.

τ(pr ) = r + 1

Part (3): Part (2) is done on the next page, since it’s lengthy. We borrow its result

here, that τ(mn) = τ(m)τ(n). We can then write To use our result from (2),
note that the GCD of any
two expodentiated primes in
this list is 1. As proof, for two
primes p

a1
1 and p

a2
2 , we have

that any two of their divisors,

x1 and x2, are of the form p
i1
1 ,

p
i2
2 , where i1 ≤ a1, i2 ≤ a2.

Thus we have that x1 , x2
except when i1 = i2 = 0, i.e.
x1 = x2 = 1 is the only, and
thus greatest, common divi-
sor of pa1

1 and p
a2
2 .

τ(a1a2...an) = τ(a1)τ(a2...an) = τ(a1)τ(a2)τ(a3...an) = ... = τ(a1)τ(a2)...τ(an)

Consider τ
(
pa1

1 ...p
ak
k

)
. From (2) and above, this is

k∏
i=1

τ(paii ).

k∏
i=1

τ(paii ) =
k∏

i=1

(ai + 1)

and we are done.
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Part (2): Let D(i) denote the set of all divisors of i. We see that for m = pa1
1 ...p

ak
k ,

as before, all divisors can be made up of combinations of these primes and their

powers, where no divisors diverge from this form (see lemma):

D(m) = [1, p1, p
2
1, ..., p

a1
1 ] × [1, p2, p

2
2, ..., p

a2
2 ] × ... × [1, pk , p

2
k , ..., p

ak
k ]

Note that this Cartesian product allows for no duplicates, since all pi are distinct.

Pick a prime p
a′i
i in each set [1, pi , ..., p

ai
i ], with 1 ≤ a′i ≤ ai . Then there are

k∑
i=1

(k
i

)
ways of choosing divisors from [p

a′1
1 ]× ...× [p

a′k
k ]. Furthermore, let there be Pm ways

of fixing primes, without replacement, as we’ve just done. Then the total unique

combinations are

τ(m) =

 k∑
i=1

(
k
i

)Pm

Similarly, for n = qb1
1 ...qbll , we have

τ(n) =

 l∑
i=1

(
l
i

)Pn

Write mn as pa1
1 ...p

ak
k qb1

1 ...qbll . Fixing all a′1, ..., a
′
k , b
′
1, ..., b

′
l as we did before, we can

count
k+l∑
i=1

(k+l
i

)
corresponding divisors. Note that, since gcd(m, n) = 1, they share

no common divisors other than 1. This ensures that, in the calculation above, we

are not counting duplicate products.

Consider all ways in which a′1, ..., a
′
k , b
′
1, ..., b

′
l can be chosen uniquely. This is

precisely PmPn. Thus:

τ(mn) =

 k+l∑
i=1

(
k + l
i

)PnPm

By Binomial theorem, τ(m) = 2kPm, τ(n) = 2lPn, and τ(mn) = 2k+lPmPn =

2kPm2lPn = τ(m)τ(n), and we are done.
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question 2

Part (1): Let c = lcm(m, n). Then m|c and n|c. Further, we have that m|cq and n|cq
for any q we’d like.

Since we have that m|k and n|k, combining with the above equations yields

m|k − cq, n|k − cq. Note that we can write k = cq+ r where 0 ≤ r < c, so simplifying

we get m|r and n|r. Thus, r is a common multiple with r < c. But it is given that c

is the least common multiple, so the only way to satisfy m|r and n|r is to conclude

r = 0.

=⇒ k = cq, and thus c|k

Part (2): Let m = pa1
1 ...p

ak
k , n = pb1

1 ...p
bk
k . Denote max{ai , bi} as maxi and min{ai , bi}

as mini . The following proof will borrow from the result shown in Q3, i.e. that

lcm(m, n) = pmax1
1 ...p

maxk

k .

lcm(m, n) gcd(m, n) = pmax1
1 ...p

maxk

k pmin1
1 ...p

mink

k

= pmax1 + min1
1 ...p

maxk + mink

k

= pa1+b1
1 ...p

ak+bk
k

= pa1
1 ...p

ak
k pb1

1 ...p
bk
k = mn

Thus, we have

lcm(m, n) =
mn

gcd(m, n)
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question 3

Before proving, we’ll need to add more construction to our prime factorization of

m and n:

Define m := pa1
1 pa2

2 ...p
ak
k and m := pb1

1 pb2
2 ...p

bk
k to be factorizations of m and n. Note

that, if there is a prime pi in the unique factorization of m that is not in n, one

sets the power bi = 0 (and vise-versa).

Let c be a common multiple of m and n, i.e. m|c, n|c, and we have

⋆ c = p
a′1
1 p

a′2
2 ...p

a′k
k and c = p

b′1
1 p

b′2
2 ...p

b′k
k with a′i ≥ ai , b

′
i ≥ bi

One normally writes c = p
a′1
1 ...p

a′k
k q1...qt and c = p

b′1
1 ...p

b′k
k r1...rt, but, as above,c.f. Proposition 10.2.1.

we can take each qi and rj to reference particular primes pi and pj with their

exponents ai = bi = aj = bj all 0.

Let l := p
max{a1,b1}
1 ...p

max{ak ,bk}
k . Denote maxi = max{ai , bi}. We can write l in the

following two forms:

(1) l = m
[
pmax1 −a1

1 ...p
maxk −ak
k

]
=⇒ m|l

(2) l = n
[
pmax1 −b1

1 ...p
maxk −bk
k

]
=⇒ n|l =⇒ l is a common multiple of m, n.

From ⋆, we can write c = pα1
1 ...p

αk

k with two conditions for α: that αi ≥ ai andNote that, since the prime
factorization for c is unique,
the previous 2 forms are
equal.

αi ≥ bi . Thus, αi ≥ max{ai , bi}.

Then, for any common multiple c, we have that c = pα1
1 ...p

αk

k ≥ pmax1
1 ...p

maxk

k

c ≥ pmax1
1 ...p

maxk

k = l is exactly our least common multiple.
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question 4

Two important facts will be important: Q is closed under multiplication; for any

i ∈ Q \ R and q ∈ Q, iq ∈ R \Q. The former is provided since Q is a ring, and for

the latter a proof:

Let i be irrational. Then, for any choice a, b ∈ Z, a
b , i (it is impossible to

express i as a ratio of two integers). Let q := c
d

=⇒ ∀ a, b ∈ Z, ac
bd , iq. Varying a, b only, one can indeed span all of Q:

suppose we want x
y . Let a = xd, b = yc =⇒ xdc

ycd = x
y . Thus, we can rephrase

and say ∀ x, y ∈ Q, x
y , iq, i.e. iq is irrational.

Let p, q be rational, and consider
√

3 = a + b
√

2. Then:

=⇒ 3 = a2 + 2b2 + 2ab
√

2 =⇒ 3 − a2 − 2b2︸        ︷︷        ︸
∈ Q

= 2ab︸︷︷︸
∈ Q

·
√

2︸︷︷︸
∈ R\Q︸         ︷︷         ︸

∈R\Q by lemma 

Thus, p, q cannot be rational, and we are done.
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question 5

Part (1): Let N = nknk−1...n1n0, a decimal expansion, where ni ∈ N ∀i.

( =⇒ ) Suppose that N = nknk−1...n1n0 is divisible by 3. Then we have that

N (mod 3) = 0, and further n0 + 10n1 + 102n2 + ... + 10knk (mod 3) = 0. We can

express this sum as:Note that 3|10n − 1. One can
show by induction: for n = 1,
10 − 1 = 9 = 3(3) =⇒ 3|9.

Let n → n + 1. Then
10n+1−1 (mod 3) = 10·10n−
1 (mod 3) = 10 (mod 3) ·
10n (mod 3) − 1 (mod 3) =
1 · [10n−1] (mod 3) = 1(0) by
ind. hyp. Then, 3|10k+1 − 1,
and we are done.

n0 + n1 + n2 + ... + nk + 9p1 + 99p2 + ... + (10k − 1)pk

Clearly, 3|9, 3|99, ..., 3|10k − 1, i.e. (10i − 1)pi (mod 3) = 0 ∀ i.

Using the additive property of congruences, we have:

n0 + n1 + ... + nk + 9p1 + 99p2 + ... + (10k − 1)pk (mod 3) = 0

=⇒ [n0 + n1 + ... + nk (mod 3)] + [9p1 + 99p2 + ... + (10k − 1)pk (mod 3)]︸                                              ︷︷                                              ︸
=0, since all divisible by 3

= 0

=⇒ n0 + n1 + ... + nk (mod 3) = 0

=⇒ 3|n0 + n1 + ... + nk

(⇐= ) Suppose now that 3|n0 + n1 + ... + nk . We know that 3|9, 3|99, ..., 3|10k − 1,

further that 3|9n1, 3|99n2, ..., 3|(10k − 1)pk, and finally that 3|9n1 + 99n2 + ... +

(10k − 1)nk .

=⇒ 3|n0 + n1 + ... + nk + 9n1 + 99n2 + ... + (10k − 1)nk

=⇒ 3|n0 + 10n1 + ... + 10knk =⇒ 3|N
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Part (2): Lemma: 11|102k − 1 and 11|102k−1 + 1 ∀k ≥ 1.

We’ll show 11|102k − 1 by induction: let k = 1. Then 10(2) − 1 = 99 = 11(9), so

11|102 − 1.

With k → k + 1, we have 102(k+1) − 1 = 102 · 102k − 1.

=⇒ 102 · 102k − 1 (mod 11) = 102 (mod 11) · 102k (mod 11) − 1 (mod 11)

Since 102 (mod 11) = 1, this is just

102k (mod 11) − 1 (mod 11) = 102k − 1 (mod 11) = 0

by ind. hyp. Thus 11|102(k+1) − 1, and we conclude 11|102k − 1.

Now we’ll show 11|102k−1 + 1, once again by induction: let k = 1. Then 10 + 1 =

11|11.

With k → k + 1, we have 102(k+1)−1 + 1 = 102k+1 + 1 = 102102k−1 + 1.

As before, 102102k−1 + 1 (mod 11) = 102 (mod 11)︸          ︷︷          ︸
=1

102k−1 (mod 11) + 1 (mod 11)

which is 102k−1 + 1 (mod 11) = 0 by ind. hyp. Thus, 102(k+1)−1 + 1 (mod 11) = 0,

and we conclude that 11|102k−1 + 1.

( =⇒ ) Assume that 11|N , and write N = n0 + 10n1 + 102n2 + ... + 10knk .

Rearranging, this is

n0 − n1 + n2 − ... − nk−1 + nk + (10 + 1)n1 + (102 − 1)n2 + ... + (10k−1 + 1)nk−1 + (10k − 1)nk︸                                                                           ︷︷                                                                           ︸
(mod 11)=0 from above︸                                                                                                                     ︷︷                                                                                                                     ︸

(mod 11)=0 by assumption

assuming WLOG that k is even.

=⇒ n0 − n1 + n2 − ... − nk−1 + nk (mod 11) = 0, or 11|n0 − n1 + n2 − ... − nk−1 + nk

(⇐= ) Now assume that 11|n0 − n1 + n2 − ... − nk−1 + nk. We know from lemma

that 11|(102k − 1)q1 and 11|(102k−1 + 1)q2 for all k ≥ 1 and arbitrary q1, q2 ∈ Z.

Then we have that 11|(10 + 1)n1 + (102 − 1)n2 + ... + (10k−1 + 1)nk−1 + (10k − 1)nk .
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Combining our assumption yields:

11|n0−n1+n2−...−nk−1+nk+(10+1)n1+(102−1)n2+...+(10k−1+1)nk−1+(10k−1)nk

or 11|N
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Part (3):

( =⇒ ) Suppose N = n0 + 10n1 + ... + 10knk is divisible by 7. We’ll show that

7|M − 2n0, with M := nknk−1...n1. We can write

M − 2n0 = nknk−1...n1 − 2n0

= n1 + 10n2 + ... + 10k−1nk − 2n0

=
1

10

(
10n1 + 102n2 + ... + 10knk

)
− 2n0

=
1

10

(
n0 + 10n1 + ... + 10knk − 21n0

)
mod 7-ing :

1
10

(
n0 + 10n1 + ... + 10knk − 21n0

)
mod 7

=
[ 1
10

mod 7
] (n0 + 10n1 + ... + 10knk) mod 7︸                                   ︷︷                                   ︸

=0 by assumption

−21n0 mod 7︸          ︷︷          ︸
=0, since 7|21


= 0, and thus 7|M − 2n0

(⇐= ) Now suppose that M − 2n0 is divisible by 7:

These are equivelant expres-
sions

7|M − 2n0 =⇒ 7|n1 + 10n2 + ... + 10k−1nk − 2n0

=⇒ 7
∣∣∣∣∣ 1
10

(
n0 + 10n1 + ... + 10knk − 21n0

)
=⇒ 7|n0 + 10n1 + ... + 10knk − 21n0

=⇒ n0 + 10n1 + ... + 10knk −21n0︸ ︷︷ ︸
mod 7=0

mod 7 = 0

=⇒ n0 + 10n1 + ... + 10knk mod 7 = 0

And thus 7|n0 + 10n1 + ... + 10knk , or 7|N
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question 6

We are considering 3·5−33

2·6+10 . Simplifying, this is −12
22 .

In Z/5Z: Following properties of the inverse, 1
22 (22) = 1 (mod 5). Setting 1

22 = 3,

one sees that 22(3) = 66 = 1 (mod 5). Thus, our problem is now [−12 (mod 5)] ·3 =

3(3) = 9

In Z/7Z: We require 1
22 (22) = 1 (mod 7) as before. Setting 1

22 = 1, we have that

1(22) = 1 (mod 7). Thus, consider [−12 (mod 7)] · 1 = 2(1) = 2
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