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1 NICHOLAS HAYEK

QUESTION 1

Let n be a positive integer and 7(n) be the number of positive divisors of n. The

following lemma will be useful in the following proofs:

Lemma Let r > 1 with r = py...pg, primes not necessarily distinct. We then have that
all divisors of r can be written as p;...p;, i.e. some combination of the prime
factors of r. Assume otherwise, and choose a divisor x|r. Then xy = r for

Y € L.

— X1..X%Y1...Yt = P1---Pk

Since the prime factorization of r = xy is unique, we can group these as
follows WLOG:

X1 XsP1oWp = P1ePjPjs1Pk

with x; = py,..., Xg = pj, and we are done.

Part (1): Suppose p is prime. p’, then, is its own prime factorization. We can
deduce that all divisors of p” may be written as {p°, p', ..., p’}, where, for any

divisor p’, we can write p'q = p” with g = p".

As shown before, all divisors can be written as a product of prime factors, and so

the set {p°, py,..., p"} is indeed complete, and has r + 1 elements.

t(p)=r+1

Part (3): Part (2) is done on the next page, since it’s lengthy. We borrow its result

here, that ©(mn) = t(m)7t(n). We can then write
t(ayay...a,) = t(ay)t(ay...a,) = t(ay)t(ay)t(as...a,) = ... = t(ay)r(ay)...t(a,)

k
Consider © (p?l...pzk). From (2) and above, this is [] T(p?i).
i=1

and we are done.

To use our result from (2),
note that the GCD of any
two expodentiated primes in
this list is 1. As proof, for two
primes p?l and pgz, we have
that any two of their divisors,
x1 and x5, are of the form pil ,

plzz, where i] < aj,ip < ap.

Thus we have that x; = xp

except when iy =i = 0, i.e.

x1 = xp = 1 is the only, and

thus greatest, common divi-
a az

sor of p;* and p,°.
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Part (2): Let D(i) denote the set of all divisors of i. We see that for m = p’ ...pzk,
as before, all divisors can be made up of combinations of these primes and their

powers, where no divisors diverge from this form (see lemma):

D(m) = (1, p1, pf, . p{fl] x 1, py, p%, ) pgz] X ... X [1, pr, p,%, ey ka]

Note that this Cartesian product allows for no duplicates, since all p; are distinct.
7 k

Pick a prime p?’ in each set [1, pj, ..., pi'], with 1 < a! < a;. Then there are ) (]f)
i=1

ways of choosing divisors from [ p?l] X oo X [pZ"]. Furthermore, let there be IP,,, ways

of fixing primes, without replacement, as we’ve just done. Then the total unique

combinations are

£k
i=1
Similarly, for n = qi’l...qlbl, we have
L (1
T(n) = ; P,
i=1

Write mn as pfl...p,fkqfl...qf”. Fixing all a, ..., a}, b}, ..., b] as we did before, we can
k+1
count ) (klfl) corresponding divisors. Note that, since gcd(m, n) = 1, they share

i=1
no common divisors other than 1. This ensures that, in the calculation above, we

are not counting duplicate products.
Consider all ways in which 4}, ..., a,’c, by, .. b; can be chosen uniquely. This is

> (1)

i=1

precisely P,,P,,. Thus:

T(mn) = P,P,

By Binomial theorem, t(m) = 2kP,, t(n) = 2'P,, and t(mn) = 2K, P, =
2kP,,2'P, = 1(m)7(n), and we are done.
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QUESTION 2

Part (1): Let ¢ = lem(m, n). Then m|c and n|c. Further, we have that m|cq and n|cq
for any g we’d like.

Since we have that m|k and n|k, combining with the above equations yields
ml|k —cq, nlk — cq. Note that we can write k = cq+r where 0 < r < ¢, so simplifying
we get m|r and n|r. Thus, r is a common multiple with r < c. But it is given that ¢
is the least common multiple, so the only way to satisfy m|r and #n|r is to conclude
r=0.

= k = cq, and thus c|k

Part (2): Let m = pfl...p,‘z", n= pfl...pi". Denote max{a;, b;} as max; and min{a;, b;}

as min;. The following proof will borrow from the result shown in Q3, i.e. that

max max
lem(m,n) =p; 'pe F
__max max; _min; miny
lem(m, n) gcd(m, n) = p; " 'op, “Fpy tpy
___max; +miny max; + miny
=p, Dy
_ a1+b1 ﬂk+bk
=p, ..
_ o om_ag by by _
=pi Pr P1 Py = mn
Thus, we have
mn
lem(m, n) =

ged(m, n)



c.f. Proposition 10.2.1.

Note that, since the prime
factorization for c is unique,
the previous 2 forms are
equal.
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QUESTION 3

Before proving, we’ll need to add more construction to our prime factorization of

m and n:

Define m := p{'py’...p;* and m := pflpgz...pi" to be factorizations of m and n. Note

that, if there is a prime p; in the unique factorization of m that is not in #n, one

sets the power b; = 0 (and vise-versa).

Let ¢ be a common multiple of m and n, i.e. m|c, n|c, and we have
’ 7 7 b/ b/ b/ .
* = pllllpgz...pzk and c=p;'p,S..pt with a;>a; b >0;
. ay  a b, b,
One normally writes ¢ = p;'...p;"q1...q; and ¢ = p;'...p,"r1...1;, but, as above,
we can take each g; and r; to reference particular primes p; and p; with their
exponents a; = b; = a; = b; all 0.

Let [ := pllnax{al’bl}...p;(nax{a"’b"}. Denote max; = max{a;, b;}. We can write [ in the

following two forms:

(1) L=m[p]™ " pp™ %] = mll

(2) I=mn [pllnax1 _bl...pkmaxk _b"] = n|l = [ is a common multiple of m, n.

From %, we can write ¢ = pfl...p,fk with two conditions for a: that a; > a; and
a; > b;. Thus, a; > max{a;, b;}.

Then, for any common multiple ¢, we have that ¢ = p{"..p;* > p™*'..p" ™

c>pl p?axk = | is exactly our least common multiple. [
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QUESTION 4

Two important facts will be important: Q is closed under multiplication; for any

i€cQ\Rand g€ Q, ig € R\ Q. The former is provided since Q is a ring, and for
the latter a proof:

Let i be irrational. Then, for any choice 4, b € Z, % # i (it is impossible to
express i as a ratio of two integers). Let q := 5

= VabeZ &«

, 74 * 1q- Varying a, b only, one can indeed span all of Q:
suppose we want f) Leta=xd,b=yc = xde _

X
ved = Thus, we can rephrase
andsay ¥ x,p € Q, % # iq, i.e. iq is irrational.

Let p, g be rational, and consider V3 = a + bV2. Then:

— 3=a2+2b%+2abV2 = 3-a®>—20%= 2ab - V2

~—— ——
eQ eQ

eR\Q

eR\Q by lemmajy
Thus, p, g cannot be rational, and we are done.
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QUESTION 5

Part (1): Let N = ngny_q...n1ng, a decimal expansion, where n; € N Vi.

( = ) Suppose that N = ngny_q...n1ny is divisible by 3. Then we have that
N (mod 3) = 0, and further ny + 101, + 1021, + ... + 1051, (mod 3) = 0. We can

Note that 3|10 — 1. One can  express this sum as:

show by induction: for n =1,

10-1=9=3(3) = 3|9.
(3) | n0+n1+n2+...+nk+9p1+99p7_+...+(10k—1)pk

Let n — n + 1. Then

10"*1 -1 (mod 3) = 10-10" - Clearly, 39, 3|99, ..., 3|10 —1,1i.e. (10' - 1)p; (mod 3) = 0V i.
1 (mod3) = 10 (mod 3) -
10" (mod 3) — 1 (mod 3) =
1-[10" 1] (mod 3) = 1(0) by
ind. hyp. Then, 3[10k+1 — 1, ;
and we are done. Ho+ 1y + ...+ N + 9p1 + 99p2 + ...+ (10 - ].)pk (mod 3) =0

Using the additive property of congruences, we have:

= [ng + 1y +... + n (mod 3)] + [9p1 + 99p, + ... + (10% - 1)px (mod 3)] =0

=0, since all divisible by 3
= ng+ny +...+ 1 (mod 3) =0

= 3|ng + 1y + ... + 1y

( <) Suppose now that 3|ng + ny + ... + n,. We know that 3|9, 3|99, ..., 310k -1,
further that 3|91, 3|991,, ..., 3|(10F — 1)py, and finally that 3|91; + 99n1, + ... +
(10X — 1)n.

= 3|ng + 1y + .o + 0+ 919 + 9915 + ... + (10K = 1)y

— 3|ng+ 10n; +...+10kn, = 3|N
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Part (2): Lemma: 11/110%% — 1 and 11102k +1 Vk > 1.

We'll show 11]10%F — 1 by induction: let k = 1. Then 10(2) = 1 = 99 = 11(9), so
11]10% - 1.

With k — k + 1, we have 102%+D) — 1 =102 .10% - 1.
— 102-10% -1 (mod 11) = 10? (mod 11) - 10%* (mod 11) — 1 (mod 11)
Since 102 (mod 11) = 1, this is just
10% (mod 11) =1 (mod 11) = 10%** =1 (mod 11) = 0
by ind. hyp. Thus 11|/102**1) — 1, and we conclude 11]10% — 1.

Now we’ll show 11|102k‘1 + 1, once again by induction: let k = 1. Then 10+ 1 =
1111.

With k — k + 1, we have 102k+1)-1 4 1 = 102%+1 1 1 = 1021021 + 1.

As before, 1021021 + 1 (mod 11) = 10% (mod 11) 10%*~! (mod 11) + 1 (mod 11)

—_—
=1

which is 10%¥"! + 1 (mod 11) = 0 by ind. hyp. Thus, 102**1)-1 4+ 1 (mod 11) = 0,
and we conclude that 11|10%%~1 + 1.

( = ) Assume that 11|N, and write N = ny + 101, + 1021, + ... + 10n;.
Rearranging, this is

Ny — 1y + 1y — oo — Mgy + g + (10 + 1)ny + (10% = 1)ny + ... + (10"‘1 + )ng_q + (10k - 1)ny

(mod 11)=0 from above

(mod 11)=0 by assumption
assuming WLOG that k is even.
= ng—ny+Mny—..—Np_1+n (mod 11) =0, 0r 11|nyg—ny + ny —... = np_1 + 1y

( & ) Now assume that 11|ng — ny + n, —... — n_; + nx. We know from lemma
that 11](102k — 1)g; and 11)(10%k1 4+ 1)g, for all k > 1 and arbitrary ¢q;, g, € Z.

Then we have that 11[(10 + 1)n; + (102 = 1)1y + ... + (1051 + 1)y + (10K = 1)my.
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Combining our assumption yields:
11|ng—ny +1p—..—1p_q + 1 +(10+ 1)y +(10% = 1) 15 +... 4+ (105 4 1) mp_g + (105 = 1) m

or 11|N
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Part (3):

(= ) Suppose N = ng + 10ny + ... + 10%n; is divisible by 7. We’ll show that
7|M - 2ngy, with M := ngny_y...n;. We can write

M - 2ny = ngng_q...n1 — 20y

=1y + 101 + ... + 105 iy — 2mg

1
m (1071 +10%m; + .. + 108 ) - 2

|~

=7 (10 + 10my + ... + 10%m; — 211y

o

1
mod 7-ing : 1o (no +10ny + ... + 10knk - 21n0) mod 7

1
= [m mod 7] (ng+10n +... + 10knk) mod 7 -21ny mod 7

=0 by assumption =0, since 7|21

=0, and thus 7|M - 2n,
( <) Now suppose that M — 2n is divisible by 7:

7IM =21y = 7|ny + 10n, + ... + 105 1, — 21,

These are equivelant expres-
sions

1
— 7'ﬁ(n0+10n1+...+10knk—21n0)
= 7lng +10n; + ... + 1051, — 21n,
— 1y + 101y + ...+ 1051, =211y mod 7 = 0
~——
mod 7=0

— 1y + 101 +..+ 1051, mod 7= 0

And thus 7|ng + 107y + ... + 1051, or 7|N
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QUESTION 6

. . 3.5-33 . cp . . )
We are considering 52-5. Simplifying, this is —5-.

In Z/5Z: Following properties of the inverse, 25(22) = 1 (mod 5). Setting 55 = 3,
one sees that 22(3) = 66 = 1 (mod 5). Thus, our problem is now [-12 (mod 5)]-3 =

3(3) =[9]

In Z/77Z: We require %(22) =1 (mod 7) as before. Setting % = 1, we have that
1(22) = 1 (mod 7). Thus, consider [-12 (mod 7)] - 1 = 2(1) =
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